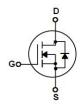

SLP13N50A / SLF13N50A 500V N-Channel MOSFET

General Description


This Power MOSFET is produced using Msemitek's advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- 13A, 500V, $R_{DS(on)} = 0.42\Omega@V_{GS} = 10 \text{ V}$
- Low gate charge (typical 19.1nC)
- Low Crss (typical 4.6pF)
- High ruggedness
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings

T_C = 25°C unless otherwise noted

Symbol	Parameter	SLP13N50A	SLF13N50A	Units
VDSS	Drain-Source Voltage	500		V
I _D	Drain Current - Continuous (TC= 25°C)	13		А
	- Continuous (TC= 100°C)	6.4*		Α
I_{DM}	Drain Current - Pulsed (Note 1)	40*		Α
V_{GSS}	Gate-Source Voltage	± 30		V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	346		mJ
I_{AR}	Avalanche Current (Note 1)	10		Α
E_{AR}	Repetitive Avalanche Energy (Note 1)	41		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5		V/ns
P_D	Power Dissipation (TC = 25°C)	32.5		W
	- Derate above 25°C	0.26		W/°C
$T_{j,T_{stg}}$	Operating and Storage Temperature Range	-55 to +150		°C
T _L	Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds	300		۰C

^{*} Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Parameter	SLP13N50A SLF13N50A		Units	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	4.0		°C/W	
$R_{ heta JS}$	Thermal Resistance, Case-to-Sink Typ.			°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	47.8		°C/W	

Package Marking

Part Number	Top Marking	Package	Packing Method	MOQ	QTY
SLP13N50A	SLP13N50A	T0-220C	Tube	1000	5000
SLF13N50A	SLF13N50A	T0-220F	Tube	1000	5000

Electrical Characteristics TC = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	500			V
ΔBV _{DSS} / ΔΤ _{.I}	Breakdown Voltage Temperature Coefficient	I _D = 250μA,Referenced to 25°C		0.51		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500V, V _{GS} = 0V			1	μA
		V _{DS} = 400V,T _C = 125° C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
On Chara	acteristics			•		
$V_{\text{GS(TH)}}$	Gate Threshold voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	2.0		4.0	V
R _{DS(On)}	Drain-Source on-state resistance	V_{GS} =10V, I_{D} = 5A, T_{J} = 25°C V_{DS} = 40V, I_{D} = 5A		0.42	0.54	Ω
g _{FS}	Forward Transconductance	$V_{DS} = 40V, I_{D} = 5A$ (Note 4)		7.5		S
Dynamic	Characteristics					
C_{iss}	Input capacitance), OF),), O),		1066		pF
C_{oss}	Output capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0 MHz		153		pF
C_{rss}	Reverse transfer capacitance	1 - 1.0 WH IZ		4.6		pF
Switchin	g Characteristics					
$t_{d(on)}$	Turn On Delay Time			20		ns
t _r	Rising Time	$V_{DD} = 250V, ID = 10A,$ $R_{G} = 25 \Omega$		32		ns
$t_{d(off)}$	Turn Off Delay Time	(Note 4, 5)		64		ns
t _f	Fall Time	1		32		ns
Q_g	Total Gate Charge	V _{DS} = 400V, ID = 10A, V _{GS} = 10V		19.1		nC
Q_{gs}	Gate-Source Charge			5.5		nC
Q_{qd}	Gate-Drain Charge	(Note 4, 5)		6.4		nC
Drain-So	urce Diode Characteristics and	Maximum Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				10	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				40	Α
V_{SD}	Diode Forward Voltage	V _{GS} = 0V, I _S = 10A			1.2	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0V, I_S = 10A,$		320		ns
Q _{rr}	Reverse Recovery Charge	dl _F / dt = 100 A/μs Note 4)		2.2		μC

- Repetitive Rating : Pulse width limited by maximum junction temperature
 L = 7.2 mH, VDD = 50V, RG = 25 Ω, Starting TJ = 25°C
 ISD≤10A, di/dt ≤200A/us, VDD ≤ BVDSS, Starting TJ = 25°C

- 4. Pulse Test : Pulse width \leq 300us, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Typical Characteristics

Table 7 Reverse diode characteristics

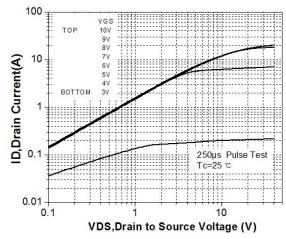


Figure 1. On-Region Characteristics

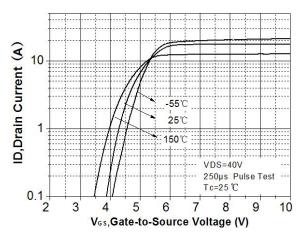


Figure 2. Transfer Characteristics

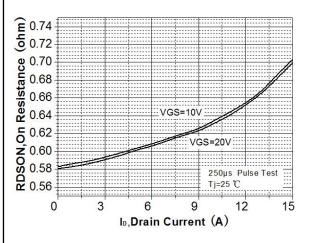


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage



Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

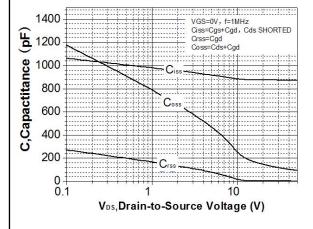


Figure 5. Capacitance Characteristics

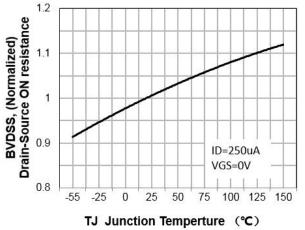
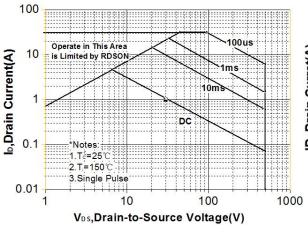



Figure 6. Gate Charge Characteristics



2.7 RDSON, (Normalized)
Drain-Source Breakdown Voltage 2.4 2.1 1.8 1.5 1.2 0.9 ID=4A 0.6 VGS=0V 0.3 -25 0 25 50 75 100 125 150 -55 TJ Junction Temperture (℃)

Figure 7. Breakdown Voltage Variation vs Temperature

Figure 8. On-Resistance Variation vs Temperature

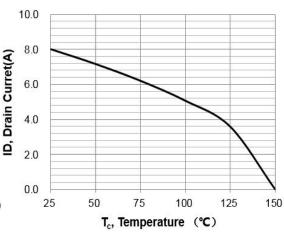


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs Case Temperature

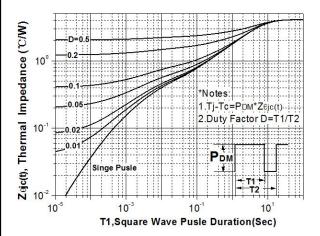
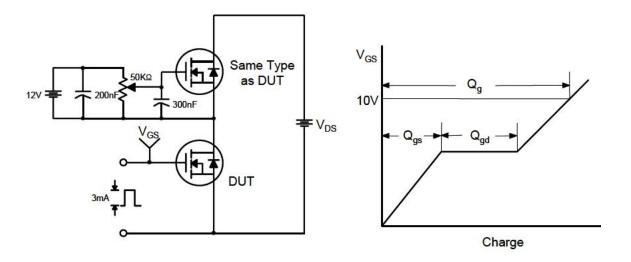
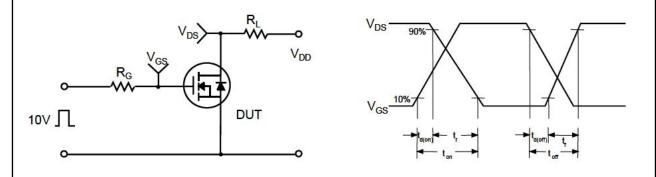
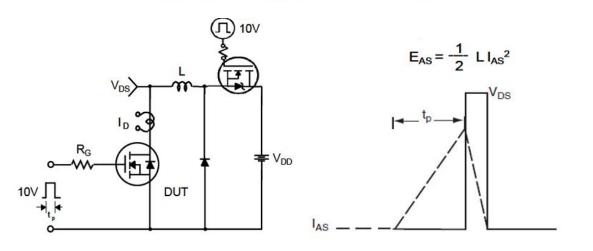
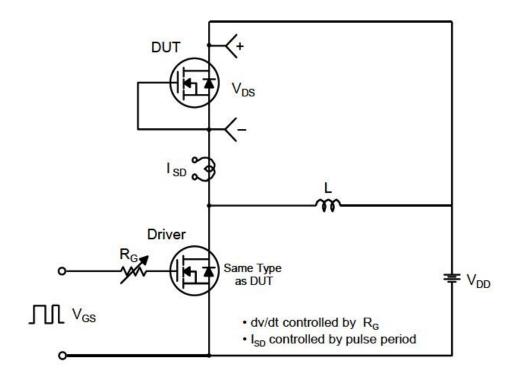
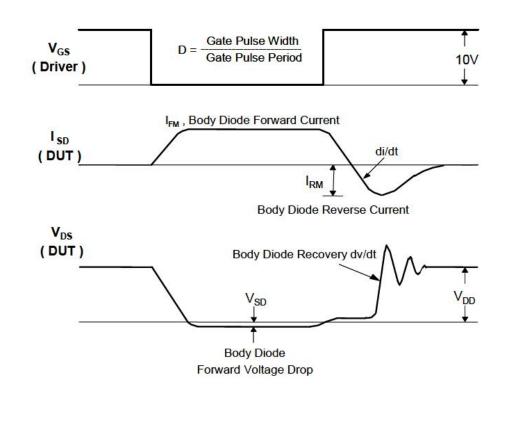




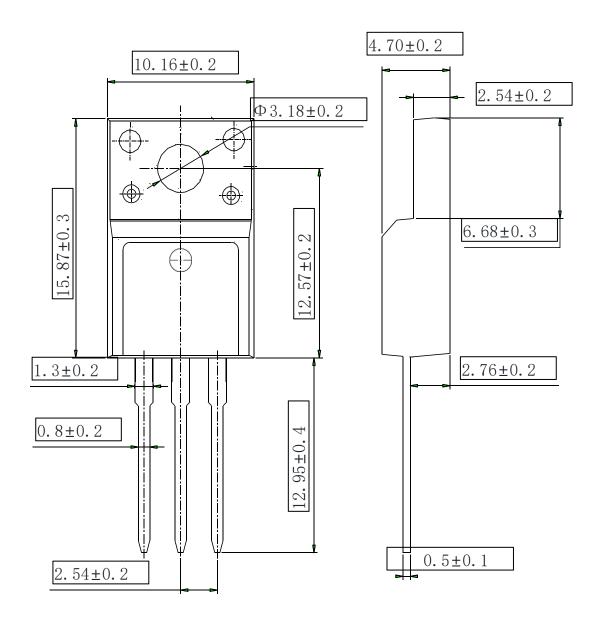
Figure 11. Transient Thermal Response Curve


Gate Charge Test Circuit & Waveform

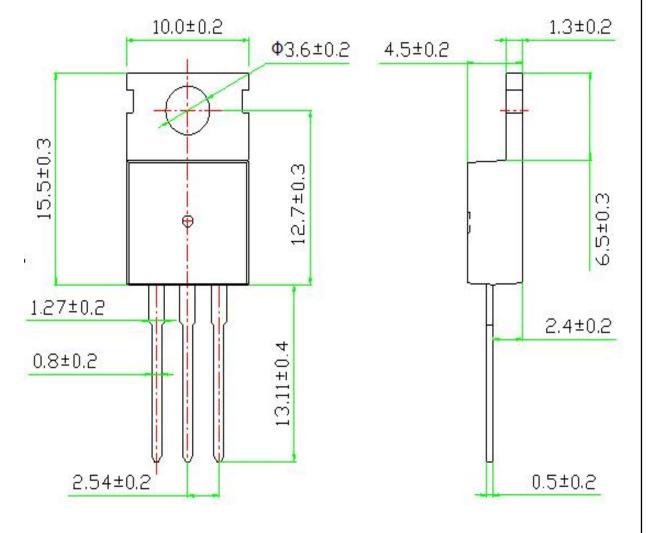

Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms



Peak Diode Recovery dv/dt Test Circuit & Waveforms


TO-220F OUTLINE

NOTE:

1The plastic package is not marked as smooth surfaceRa=0.1;Subglossy surfaceRa=0.8 2.Undeclared tolerance±0.15,Unmarked filletRmax=0.25

TO-220C OUTLINE

Disclaimer

The content specified herein is for the purpose of introducing Msemitek's products (here in after "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Msemitek does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). Msemitek shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although, Msemitek endeavors to improve the quality and reliability of it's products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Msemitek's product.

The content specified herein is subject to change for improvement without notice. When using a Msemitek's product, be sure to obtain the latest specifications.