

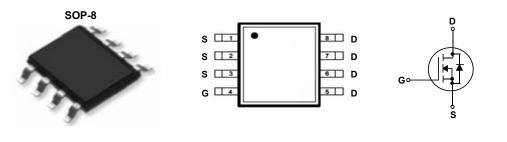
SLS20N03T 30V N -Channel MOSFET

General Description

This Power MOSFET is produced using Msemitek's advanced TRENCH technology.

This advanced technology has been especially tailored to minimize conduction loss, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

Application


- ✓ PWM Application✓ Load Switch
- Power Management

Features

- N-Channel:30V 20A
 - $R_{DS(on)Typ} = 10m\Omega @VGS = 10 V$
 - $R_{DS(on)Typ}$ = 14.8m Ω @VGS =4.5 V

LS20N03

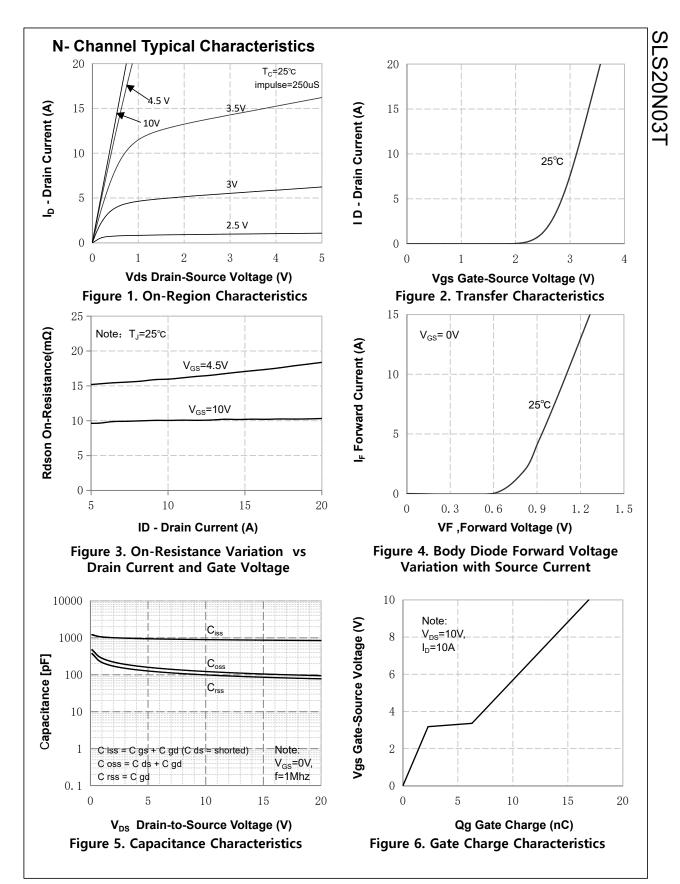
- Very Low On-resistance R_{DS(ON)}
- Low Crss
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

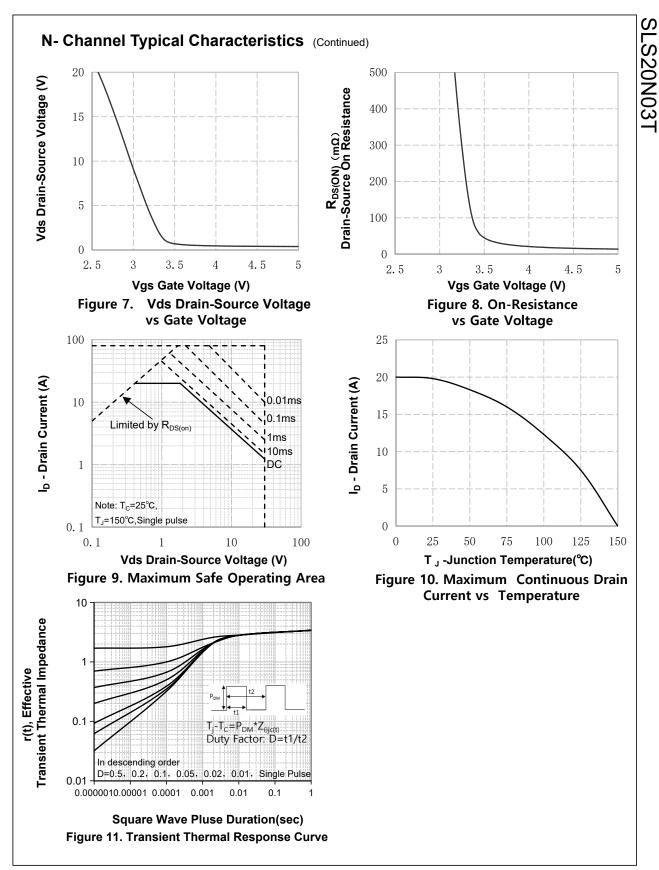
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

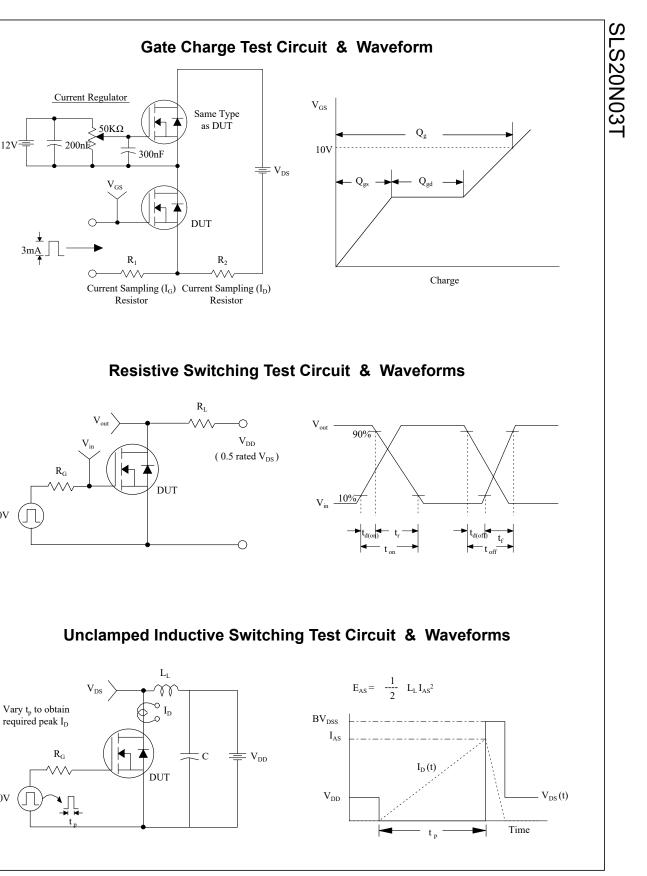
Symbol	Parameter	SLS20N03T	Units
V _{DSS}	Drain-Source Voltage	30	V
ID	Drain Current - Continuous ($T_c = 25^{\circ}C$)	20	А
	- Continuous (T _c = 100°C)	13	А
IDM	Drain Current - Pulsed (Note 1)	80	А
V _{GSS}	Gate-Source Voltage	±20	V
E _{AS}	Single Pulsed Avalanche Energy	52	mJ
PD	Power Dissipation ($T_c = 25^{\circ}C$)	3	W
R _{eJC}	Thermal Resistance, Junction to Case	42	°C/W
TJ, TSTG	Operating and Storage Temperature Range	-55 to +150	°
T∟	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C

* Drain current limited by maximum junction temperature.

Part Number		Top Marking	Packago		e Packing Method		Q	QTY	
Part Numper			Package		Facking Method	IVIC	20		
SLS20N03T SLS20N03T		SOF	P-8	Tape & Reel	3000		60000		
Elect	rical Ch	aracteristics	Tc	= 25°C ເ	unless otherwise noted				
Symbol		Parameter			Test Conditions	Min	Тур	Max	Units
Off Ch	aracterist	ics							
BV _{DSS}	Drain-Sour	Drain-Source Breakdown Voltage			V, I _D = 250 uA	30			V
IDSS	Zero Gate	Voltage Drain Current	,	V _{DS} =30) V, V _{GS} = 0 V			1	uA
IGSSF		Leakage Current, Forv			0V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body	Leakage Current, Rev			20 V, V _{DS} = 0 V			-100	nA
$V_{\text{GS(th)}}$	Gate Threshold Voltage			V _{DS} = V	ν _{gs} , I _D = 250 uA	1.0	1.6	2.2	V
• GS(III)		shold voltage				1.0			`
R _{DS(on)}	DS(on) Static Drain-Source On-Resistance		_		0 V, I _D = 20A		10	14	mΩ
				V _{GS} =4	5 V, I _D = 10A		14.8	19	
Dynam	ic Charac	cteristics							
Ciss	Input Capa	citance		$\frac{1}{10000000000000000000000000000000000$			865	-	pF
Coss	Output Ca	pacitance					105	-	pF
C _{rss}	Reverse T	ransfer Capacitance	'				86	-	pF
Switch	ing Chara	acteristics				-			
t _{d(on)5}	Turn-On D	elay Time		V _{GS} =10V, V _{DS} =15V, R _L = 3Ω ,I _D =10A Tj=25°C			5		ns
tr	Turn-On R	ise Time	,				4		ns
$t_{d(off)}$	Turn-Off D	elay Time					22		ns
t _f	Turn-Off Fa	all Time					6		ns
Qg	Total Gate	Charge	•	V _{DS} =15V, I _D =10A, V _{GS} = 10V			17.2		nC
Q_gs	Gate-Sour	ce Charge					2.7		nC
Q_{gd}	Gate-Drair	n Charge					4.0		nC

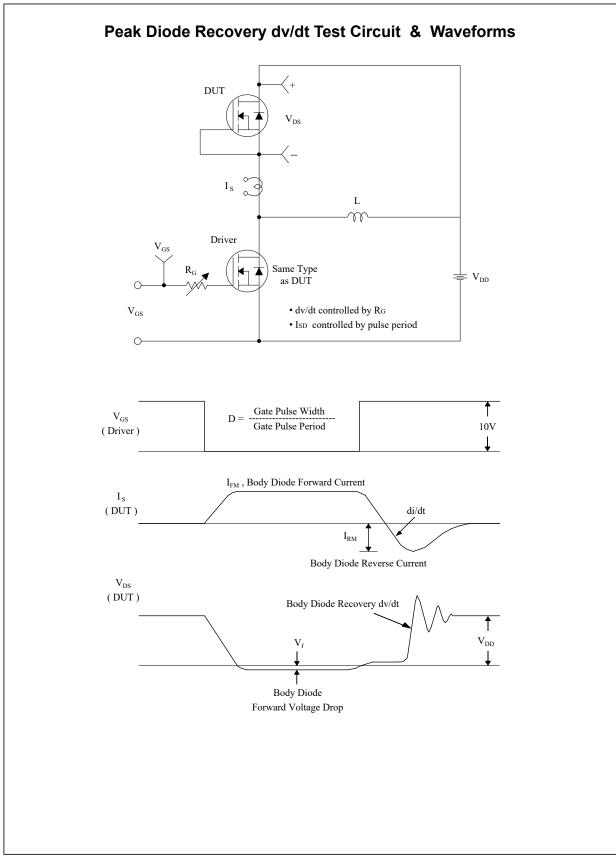

Drain-Source Diode Characteristics and Maximum Ratings


ls	Maximum Continuous Drain-Source Diode Forward Current		 20	А
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current	1	 80	А
Vsd	Drain to Source Diode Forward Voltage, $V_{GS} = 0V$, $I_{SD} = 10A$, $T_J = 25^{\circ}C$	1	 1.2	V

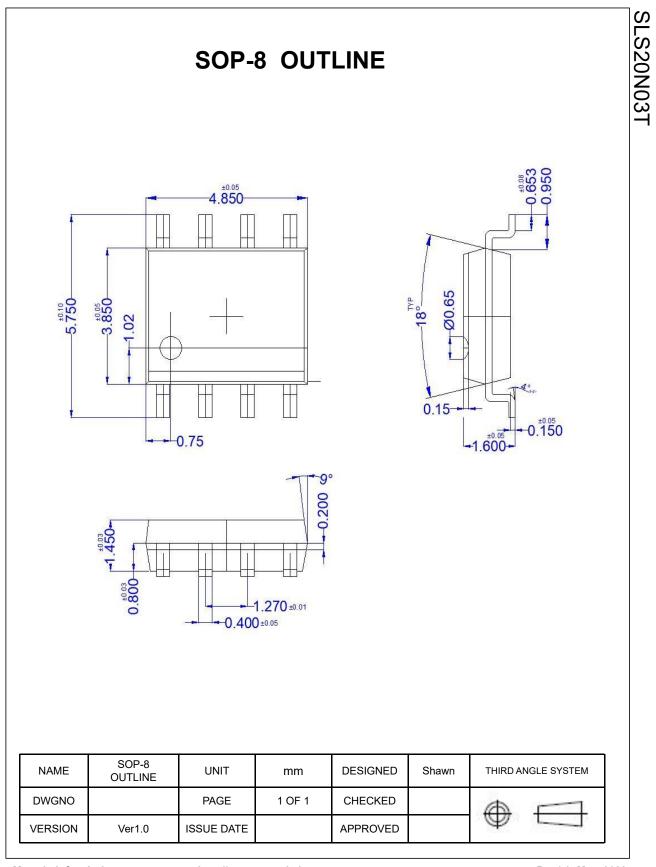

Notes:

1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature 2. EAS condition: T $_{\rm J}$ =25°C, V $_{\rm DD}$ =15V, V $_{\rm G}$ =5V, R $_{\rm G}$ =25 Ω , L=0.5mH, I $_{\rm AS}$ =34A 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

SLS20N03T



10V


12V

10V

3mA

SLS20N03T

Disclaimer

The content specified herein is for the purpose of introducing Msemitek's products (here in after "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Msemitek does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). Msemitek shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although, Msemitek endeavors to improve the quality and reliability of it's products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Msemitek's product.

The content specified herein is subject to change for improvement without notice. When using a Msemitek's product, be sure to obtain the latest specifications.