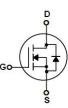
Maplesemi

SLP11N50S / SLF11N50S 500V N-Channel MOSFET

General Description


This Power MOSFET is produced using Maple semi's advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- 11A, 500V, $R_{\text{DS(on)}}$ = 0.460@V_{GS} = 10 V
- Low gate charge (typical 19.1nC)
- Low Crss (typical 4.6pF)
- High ruggedness
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

TO-220F

Absolute Maximum Ratings

 $T_{\rm C}$ = 25°C unless otherwise noted

Symbol	Parameter	SLP11N50S	SLF11N50S	Units
VDSS	Drain-Source Voltage	500		V
	Drain Current - Continuous (TC= 25°C)	11		А
Ι _D	- Continuous (TC= 100°C)	6.	А	
I _{DM}	Drain Current - Pulsed (Note 1)	40*		А
V _{GSS}	Gate-Source Voltage	± 30		V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	346		mJ
I _{AR}	Avalanche Current (Note 1)	10		А
E _{AR}	Repetitive Avalanche Energy (Note 1)	41		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	5		V/ns
P _D	Power Dissipation (TC = 25°C)	32	2.5	W
ΓD	- Derate above 25°C	0.26		W/°C
T _j ,T _{stg}	Operating and Storage Temperature Range	-55 to +150		۰C
ΤL	Maximum lead temperature for soldering purposes,1/8" from case for 5 seconds	300		٥C

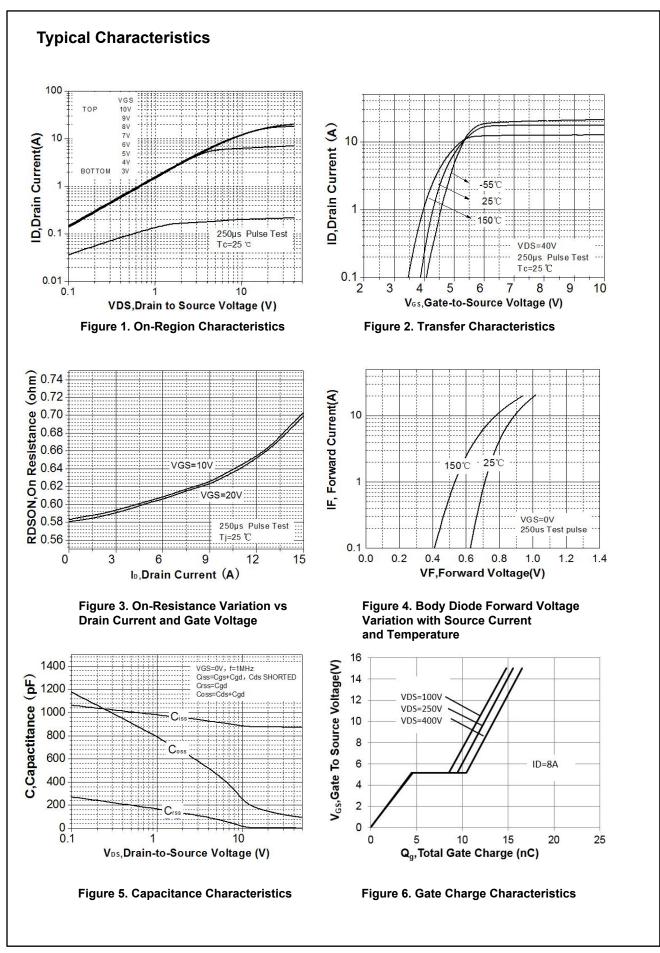
* Drain current limited by maximum junction temperature

Thermal Characteristics

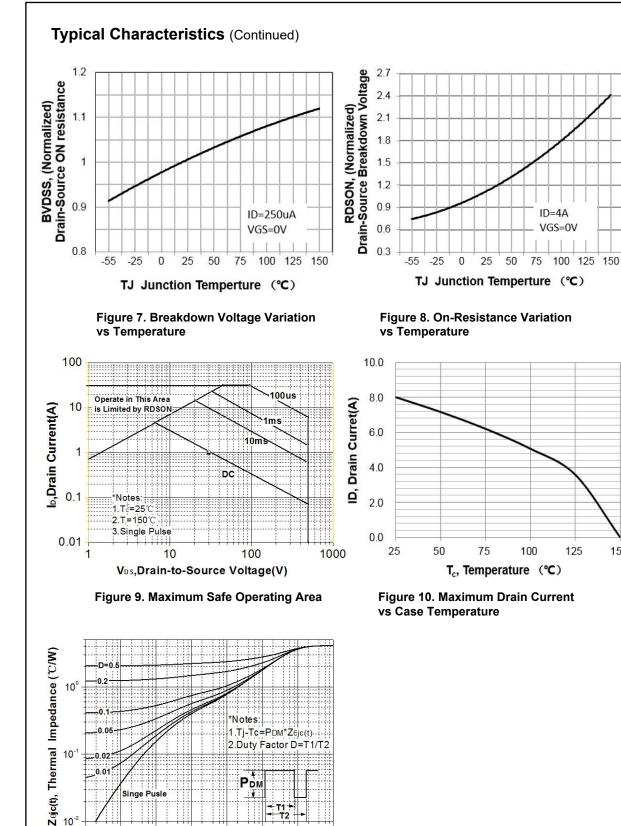
Symbol	Parameter	SLP11N50S	SLF11N50S	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case	4.0		°C/W
$R_{\theta JS}$	Thermal Resistance, Case-to-Sink Typ.			°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient	47	.8	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Chara	acteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 250 µA	500			V
ΔBV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenc ed to 25°C		0.51		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V			1	μA
		V _{DS} = 400 V, TC = 125° C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Chara	acteristics					
$V_{GS(TH)}$	Gate Threshold voltage	$V_{DS}=V_{GS}$, I_D =250 uA	2.0		4.0	V
$R_{\text{DS(On)}}$	Drain-Source on-state resistance	V _{GS} =10 V, I _D = 5 A, T _J = 25°C		0.46	0.580	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 5 \text{ A}$ (Note 4)		7.5		S
Dynamic	Characteristics					
C_{iss}	Input capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		1066		pF
C_{oss}	Output capacitance			153		pF
C _{rss}	Reverse transfer capacitance			4.6		pF
Switchin	g Characteristics	· · · · · ·				
t _{d(on)}	Turn On Delay Time	_		20		ns
t _r	Rising Time	V _{DD} = 250 V, ID = 10 A, R _G = 25 Ω (Note 4, 5)		32		ns
$t_{d(off)}$	Turn Off Delay Time			64		ns
t _f	Fall Time			32		ns
Q _g	Total Gate Charge	1/2 = 400 1/10 = 10.4		19.1		nC
Q_gs	Gate-Source Charge	– V _{DS} = 400 V, ID = 10 A, V _{GS} = 10 V		5.5		nC
Q_gd	Gate-Drain Charge	(Note 4, 5)		6.4		nC
-	urce Diode Characteristics and	Maximum Ratings			<u> </u>	
۱ _s	Maximum Continuous Drain-Source Diode Forward Current				10	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				40	А
V_{SD}	Diode Forward Voltage	V _{GS} = 0 V, I _S = 10 A			1.2	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{S} = 10 A,$		320		ns
Q _{rr}	Reverse Recovery Charge	− dI _F / dt = 100 A/µs Note 4)		2.2		μC

Notes:


1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 7.2 mH, IAS = 10 A, VDD = 50V, RG = 25Ω , Starting TJ = 25° C

3. ISD≤10A, di/dt ≤200A/us, VDD ≤ BVDSS, Starting TJ = 25°C

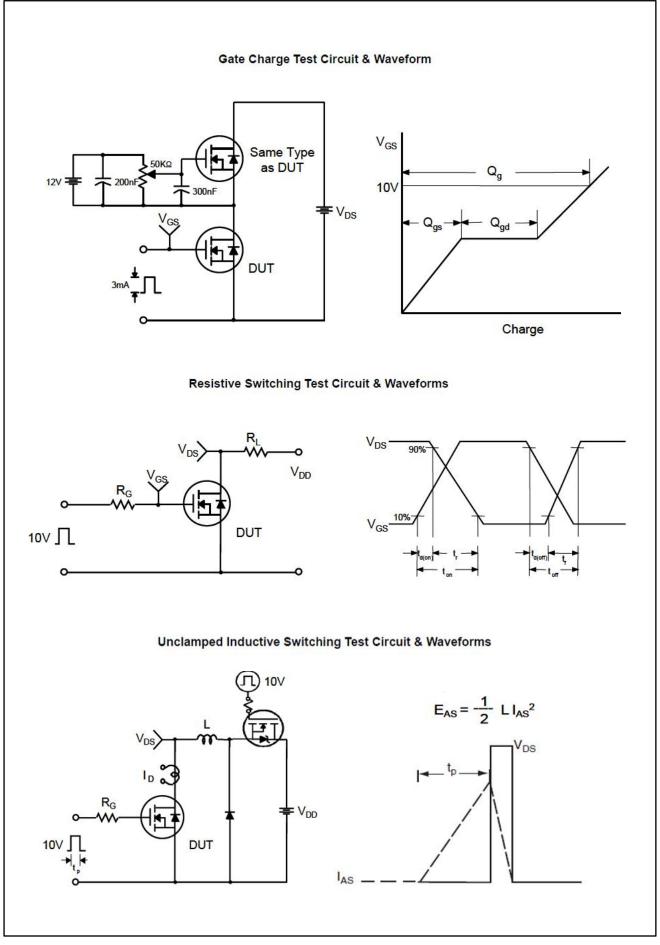

4. Pulse Test : Pulse width \leq 300us, Duty cycle $\leq 2\%$

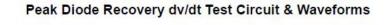
5. Essentially independent of operating temperature

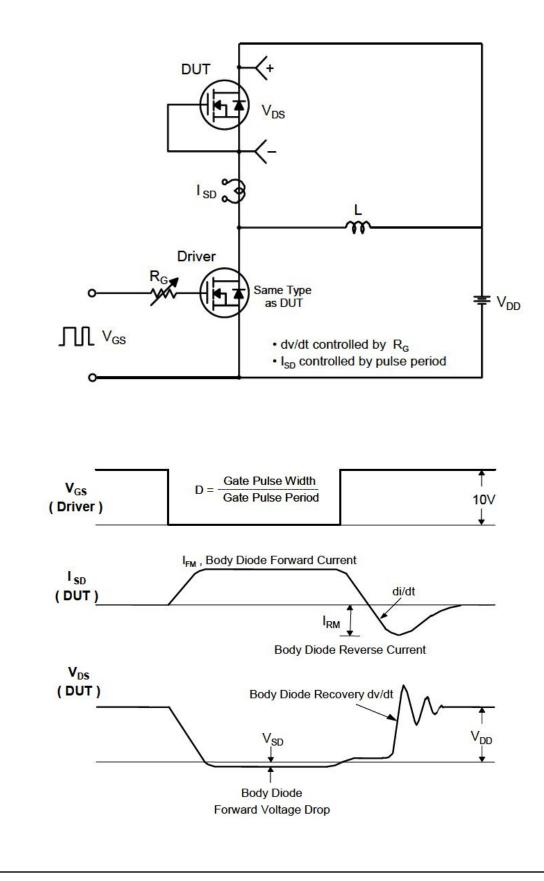
SLP11N50S / SLF11N50S

SLP11N50S / SLF11N50S

10-3


10


Figure 11. Transient Thermal Response Curve


T1,Square Wave Pusle Duration(Sec)

10

10 10⁻⁵ 150

